
HST Vision 2000
Archive Format Study

P Ditson 1 9/26/96 3:46 PM

Analysis and Trade Study of

HST Control Center System

Telemetry Archive Storage Formats

The Problem

Current projections for the volume of data to be stored by the CCS archive are on the order of 200
Gigabytes per month, expanding to upwards of 45 Terabytes over 20 years. This estimate varies depending
on factors such as telemetry format, archive format, and volume of ancillary data to be stored. Storage,
management, and reasonable use of this amount of data poses a technological challenge.

The task of accessing this data is presently being relegated to a data warehousing product. The choice of
this technology places certain constraints on the storage and management solutions. Additionally, system
resources present constraints, or at least require consideration prior to development.

It is the intent of this study to provide a recommended approach to formatting and storing the archive data,
such that it is compatible with the data warehouse product, provides reasonable performance, does not
represent an unreasonable impact to system resources, and does not overly complicate system development,
operations, and maintenance.

The System

The system is comprised of four elements: Preloader, Data Warehouse, Data Server, and Ancillary Storage.

 Preloader

Receives data from Merge Process, assumed to be in FEP Output Format (FOF) packets. The
preloader's task is to convert data from the packetized FOF to fields for input to the data warehouse.
For all options this requires at least associating the mnemonic and its values with a time, data source,
and telemetry format. Any additional pre-processing requirements are dependant upon the storage
format to be chosen.

 Data Warehouse

Receives data from Preloader, ingests into tables, maintains associations, manages storage resource,
processes queries from Data Server, and outputs solution sets to Data Server in DW output format.
Processing and storage volume are dependant upon storage format to be chosen.

 Data Server

Receives and manages query requests from users, reformats if necessary, and submits queries to DW.
Receives solution sets from DW, formats into CDF packets for transmission to user. Output format
details (i.e. changes only/all points, integer/float, raw/EU) dependant upon definition of CDF and
design of Data Server. Nature of processing required to format the output is dependant upon design
decisions yet to be made, and storage format to be chosen.

 Ancillary Storage

Stores and maintains any data which is not kept in the data warehouse. This includes user files,
macros, init files, solution sets required to be kept, and other data which may be dependant on the
storage format.

The Data

The telemetry data exists in three basic formats: FEP Output Format, Common Data Format, and Storage
Format.

 FEP Output Format

The FOF is the format of data transmitted by the FEP, and received by the Merge Processor. FOF files
are temporarily staged in an “Ingest area” under control of the Merge Processor. At some point in

HST Vision 2000
Archive Format Study

P Ditson 2 9/26/96 3:46 PM

time, all data in the staging area is merged into a “seamless” set of FEP packets and forwarded to the
archive’s Preloader process.

Each FOF packet received by the Preloader consists of a header object and an element object. The
header contains three time fields, a telemetry format, and data source information. The element object
consists of a variable number of records consisting of mnemonic identifier, raw PCM counts, EU
converted value, and data quality flags. Two packets will exist for every minor frame (high rate format)
telemetry which is received by the FEP.

 Common Data Format

The CDF is the format of data transmitted by the Data Server to the User. The construction of a set of
CDFs is performed in response to a user request for data. Usually the request will be in the form of an
SQL statement, or may be readily decomposed into an SQL statement within the Data Server. The
solution set which satisfies the query will be composed into CDF format by a Data Server process,
and then transmitted to the user process.

Each CDF packet consists of a header object and an element object. The header contains a single time
field, a telemetry field, and data source information. The element object consists of a variable number
of records consisting of a mnemonic identifier, EU converted value, raw PCM counts and data flags.
The number of records in a CDF will be dependant upon the nature of the query, the data returned, and
the telemetry format. The number of CDFs will also depend upon the nature of the query and the time
span requested.

Whether the data is to be transmitted to the user as all contiguous data points, as changes only, or
whether the user can select either, is yet to be determined.

 Storage Format

This is the format of the data as it resides in the data warehouse, or in any other location, to be
retrieved by the Data Server. For telemetry data, the Preloader breaks FOF packets into database
records. Depending upon the option selected, this action may result in data duplication, reduction, or
elimination.

The Options

The data to be stored represents a tremendous volume, so there is an interest in reducing the stored data to
a minimum. This would allow the process of extracting and querying the data to be more efficient, and
would reduce the cost of storage. However, any processing performed on the input by the Preloader must be
countered by the Data Server in order to reconstruct the data for output. Therefore, there is also interest in
keeping the modification of data to a minimum in the Preloader. This would minimize Preloader and Data
Server complexity.

The issue, then, is one of the cost of hardware and media, versus resource utilization and peformance,
versus the complexity of software to implement and support data reduction and reconstruction.

It should be noted that an advertised feature of the Red Brick data warehouse allows it to efficiently access a
secondary storage medium (optical is recommended), and to manage data distributed across multiple
media. Therefore, data on secondary direct-access media is defined to be on-line.

Data segments can be accessed directly from the secondary medium without requiring magnetic staging.
This imparts a performance penalty on I/O rates, but reduces the demand on the system bus and magnetic
staging resources, which would be required by an HSM design, for example. Overall the product advertises
the capability to achieve acceptable data retrieval rates directly from optical.

This places a requirement on the secondary storage hardware, however, to support a reasonable number of
simultaneous requests. Cost estimates assume that optical is the choice of secondary medium, and that
large format platters and jukeboxes are specified.

Of the many data reduction options considered, the following have been selected for direct comparison. The
remainder were eliminated from consideration based on judgement of impracticality or incompatibility with
the data warehouse product, or were considered incapable of supporting the needs of the majority of users.

Data storage techniques to be considered consist of two varieties: store all data or store a meaningful
(lossless) subset of data. Several options are considered for each technique.

HST Vision 2000
Archive Format Study

P Ditson 3 9/26/96 3:46 PM

All points

The most direct approach to storing and accessing the telemetry is to store all points in the data warehouse.
This provides immediate access to all data, with a minimal amount of pre- and post-processing overhead.
The drawbacks to this approach are: a) its consumption of the storage resource, and b) its degradation of
performance as the queried time interval becomes large.

Two options have been considered for storing all points. Option A stores all 20 bytes of required data in
the data warehouse. Option B attempts to be selective about which data really needs to be stored in the
warehouse, and what data might be segregated into another storage format which allows direct compression.
(Direct binary compression of all data is incompatible with the data warehouse product. This capability
may be offered in a future release.)

Option A - Full CDF
This option involves storing in the warehouse, all information to be contained in the CDF. This consists
of all points of data for all time, and all fields of the output data packet represented in the warehouse. This
minimizes the complexity of preloading data for the warehouse and reconstructing data for output by the
data server. The primary issue involved with this option is the sheer volume of data to be stored.

 Volume

This option assumes a nominal 20 byte storage format consisting of the fields shown in Table 1. With
a database expansion factor of 30% (Red Brick estimate), storage volume is on the order of 220 GB per
month or 45 TB for the mission (including 75% low data rate for first 5 years).

Table 1 - All Points, Full CDF
Field Bytes
Spacecraft time 8
Mnemonic ID (numeric) 2
Raw value 4
EU value 4
Flags 2

Total 20
Results

84 kBytes per second
7.25 GB per day
220 GB per month
45 TB for mission

Constants
3229 avg data points per second
30% DB expansion factor (Red Brick estimate)
2,629,800 seconds per month (1/12 year)

 Complexity

The Preloader receives all points of data from the Merge Process in seamless CDF (FOF) packets. Data
is directly ingested by breaking the input data packet into fields, and duplicating the spacecraft time for
each mnemonic in the CDF packet. This is a very simple process, consisting of n major functions.

Data Warehouse ingest, querying, and retrieval is minimized. Red Brick does not have practical
experience with multiple Terabytes of data, but theoretically there is no practical limit to the amount
of data queryable (248 = 280 T rows) and the process complexity remains reasonably constant as data
volume increases. This is a Red Brick feature.

Data Server performs extraction directly on the stored data according to the input query; no
construction of complex queries is required. All features of the data warehouse may be directly utilized
for data mining and ad hoc querying. Only basic reconstruction of data points is required prior to
presentation to the user; the data server formats the output into CDF packets, and builds headers and
time stamps. This is a simple process consisting of n major functions.

For large time intervals, Data Server complexity increases in order to manage larger files, and to extract
changes only, if requested.

HST Vision 2000
Archive Format Study

P Ditson 4 9/26/96 3:46 PM

 Cost

 Performance

Preloader performance is maximized due to the limited complexity of breaking input packets into raw
data to store.

DW performance is high for time-bounded intervals of reasonable length. Multiple discrete intervals are
accessible with no additional complexity, and linear performance. As time interval becomes large - data
spans several physical storage units, for example - performance becomes dependant upon seek times.
As discrete intervals become numerous, the same performance penalty applies. However, due to the
time-oriented nature of the data, and the indexing scheme applied by the data warehouse, only those
files which contain data in the solution will be accessed. Data is accessed directly by index, not by
table scan, up to a threshold (30% of table rows).

By nature, DW performance is low for occurrence-based queries when applied to a time-indexed
schema. For those queries which span all time, counting occurrences, all data segments will be
accessed. Response times will rapidly degrade as volume increases.

Data Server performance is maximized for bounded-time queries, due to the limited complexity of
constructing output packets. As data sets become large, data server processing increases, and
performance will drop.

Option B - Modified CDF
This option attempts to be selective about the nature of data to be stored in the data warehouse.
Several variations exist; the example used for this discussion represents perhaps the smallest achievable
byte count per data point. This variation is chosen to present several of the issues.

First, in this concept, it is assumed that the Raw and EU fields of the CDF are only meaningful for
those parameters to which calibration coefficients are applied - analogs. These two fields are redundant
for discrete, bi-level, and memory parameters (or one field is null). Therefore, the EU value is selected
to represent the only data which the warehouse will store, and the analog raw data is segregated and
stored in time-indexed flat files elsewhere. Binary compression can also be used on flat files to further
reduce their volume.

Secondly, it is also assumed that no meaningful queries will be performed on raw data. This data only
exists in order to support those systems which will analyze the raw data directly. Filtering of data by
query will be performed on other parameters or EU values.

Finally, there are a number of techniques which might be applied to reduce the size of the data fields
themselves. One example utilizes a scheme which codes the spacecraft time into a five byte field.

 Volume

A reduced 13 byte storage format is shown in Table 2. With the database expansion factor applied, the
storage volume is now on the order of 143 GB per month or less than 30 TB for the mission - a 35%
reduction.

Also to be considered is the volume necessary to store all analog raw values in flat files with a CDF-
type format (i.e. header with a single time value, followed by several mnemonic ids and raw data). The
volume estimated for raw storage does not include a 3:1 (typical) binary compression factor. This
example likely represents the greatest reduction of volume possible under an all-points scheme.

Table 2 - All Points, Reduced CDF

HST Vision 2000
Archive Format Study

P Ditson 5 9/26/96 3:46 PM

Field Bytes
Spacecraft time 5
Mnemonic ID (numeric) 2
Raw value 0
EU value 4
Flags 2

Total 13

Results DW Raw
Analogs

Total*

kBytes per sec 54.6 6.1 60.7
GB per day 4.7 0.5 5.2

GB per month 143 16 160
TB for mission 29.2 3.3 32.5

Constants
3229 avg data points per second
30% DB expansion factor (Red Brick estimate)
2,629,800 seconds per month (1/12 year)
.33 binary compression on flat files not included
* in terms of pure volume only - this is not the
volume managed by the DW

The final result is a monthly data volume of nearly 160 GB, or 32.5 TB for the mission. In terms of
pure volume, this a 28% rate reduction over all-points. However, the volume to be maintained by the
data warehouse remains at 143 GB per month since the raw data can be stored seperately. It is assumed
that the raw data can be more quickly migrated offline (e.g. keep online for 60 days or 80% of
requests). The raw data can still be retrieved via batch request or storage management scheme.

 Complexity

The Preloader receives all points of data from the Merge Process in seamless CDF (FOF) packets. Data
is ingested into the Data Warehouse by breaking the input data packet into fields, and duplicating the
spacecraft time for each mnemonic in the CDF packet. This is a very simple process, consisting of n
major functions.

Raw analog data is written out to straight flat files, indexed by time, stored on a separate volume, and
compressed via system calls. This is a very simple process, consisting of n major functions.

As with straight all-points, Data Warehouse ingest, querying, and retrieval complexity is minimized.
All features of the data warehouse may be directly utilized for data mining and ad hoc querying. The
complexity of managing the online data may be slightly reduced.

The Data Server performs extraction for EU values directly on the stored data according to the input
query. If raw data is requested, an algorithm accesses the appropriate flat files and extracts the raw
values of interest. This data is then reconstructed into CDF packets for delivery to the user. This is a
moderately complex process consisting of n major functions.

Only basic reconstruction of data points is required prior to presentation to the user; the data server
formats the output into CDF packets, and builds headers and time stamps. This is a simple process
consisting of n major functions.

 Cost

 Performance

Preloader performance will be slightly poorer than straight all-points, since some fields may be coded,
and since some of the data will be extracted for flat files, incurring storage management overhead.

DW performance may be slightly better than straight all-points, due to less data to handle for ingest
and queries, and slightly less complexity for table construction. Performance remains good for short,
time-bounded queries. Performance remains poor for unbounded, occurrence queries, and large time
spans.

HST Vision 2000
Archive Format Study

P Ditson 6 9/26/96 3:46 PM

Data Server performance will be somewhat poorer than straight all-points since it must perform
extraction from flat files, including file management overhead. It is possible that raw requests are batch-
type, not requiring real-time response.

Changes only

Changes only, in its simplest form, involves reducing the data by extracting all data which is repeated in
consecutive packets. Additional methods can be employed which segregate data by its nature and apply
different rules to the data reduction algorithm.

The issues involved with storing changes generally concern the complexity of the logic which must
reconstruct the data upon retrieval, and whether the reduction scheme allows the data warehouse to be
utilized to its fullest extent.

For example, if only changes are stored in the warehouse, and a query is issued for data which is not stored,
several things occur: a) the data warehouse returns a partial solution to the query; b) the data server must
issue additional queries to obtain the most recent change; c) data averaging, trending, and other features of
the warehouse are rendered unusable.

In general, this option reduces storage volume and cost, but increases complexity of the data server code. It
does not necessarily affect the efficiency of the overall storage and retrieval process - pre-loading and data
retrieval become more efficient, but multiple queries and reconstruction processing in the data server offset
those savings. Queries over large time intervals become more manageable, but "data mining" capability
(queries on associated data or more focused intervals) suffers in performance.

Two options are considered for the changes-only approach. Option A is the “simple” approach, which
drops any data which has not changed since the previous change; all changes are stored in the warehouse.
Option B is more complex; it attempts to be more intelligent about the nature of the data by performing
smoothing, statistical averaging, sampling, and trending along with storing limited changes.

Option A - All Values
This option involves storing values for all points when the values change. The data is assumed to be
stored in the nominal 20 byte format. Lower byte counts will reduce the volume accordingly.

The advantage of this approach is that it offers an estimated 4:1 compression, reducing the storage volume
to approximately 54 GB per month. Drawbacks include the level of complexity introduced into the merge
and data load processes, as well as significant complexity on the output (data server) side. This approach
may also defeat certain data mining features of the data warehouse, such as sliding windows and running
statistics. These product features may otherwise provide enhanced query capabilities to the user which, if
required, would need to be developed and implemented in the data server.

 Volume

Volume of storage is greatly reduced for this option, and all data is stored in the warehouse. Data
points are selectively stored, which consist of: a) data which changes from the previous sample for each
mnemonic; b) initial and final points in a contiguous data stream; and c) periodic snapshot of all data
(presumably every hour). Based on independent analyses, data changes at an average rate of around 800
parameters per second. This data is represented in Table 3.

Table 3 - Changes Only, All Values

HST Vision 2000
Archive Format Study

P Ditson 7 9/26/96 3:46 PM

Field Bytes
Spacecraft time 8
Mnemonic ID (numeric) 2
Raw value 4
EU value 4
Flags 2

Total 20
Results

21 kBytes per second
1.8 GB per day

54.8 GB per month
11.1 TB for mission

Constants
800 avg data changes per second
6,472 points snapped once per hour
30% DB expansion factor (Red Brick estimate)
2,629,800 seconds per month (1/12 year)

Since periodic snapshots of all points are required, this volume must be accounted for. Risks of this
approach include underestimating the rate of change of parameters. This estimate is also sensitive to
future telemetry format definitions, which may or may not increase the overall parameter count.

 Complexity

The Preloader receives all points from the Merge Process in seamless FOF packets. Data is pre-
processed by first breaking the input data packet into fields, and duplicating the spacecraft time for each
mnemonic in the FOF packet, similar to the all points method.

The Preloader will likely maintain a table representing the most recently changed value for each
parameter, which it will use to filter out data which has not changed. Filtered data is then used to
update the change table, and is ingested into the data warehouse. This process is performed currently
on data provided as AEDP subsets. This step requires the implementation of additional code of low
complexity, and it may be possible to port the current software.

The Data Warehouse complexity is not greatly affected by the filtering function - it only stores data
which is presented to it. Additional tables may be required in order to maintain format-dependant data,
such as sampling frequencies. Depending upon the scheme used by the Data Server to reconstruct the
data, some additional tables or fields may be defined. This additional complexity may be required in
order to ensure that all mnemonics are reconstructed with the proper time tag.

Data loaded into the warehouse represents a subset of the complete telemetry stream. The data
warehouse will have no knowledge of any data which has been extracted during the reduction process.
In other words, queries on this "missing" data will return a null result. This places a responsibility on
the data reconstruction process to determine whether a partial solution set has been returned, and to
construct the missing end-points as well as fill gaps created by the reduction technique. This algorithm
must also be able to distinguish between data missing due to reduction, or data missing due to loss of
communications.

Data reconstruction will likely be required to build and submit an additional query which would
include the time of the most recent snapshot, in order to be assured of getting a data point. The logic
will then need to determine whether any additional changes occured between the snap time and the
time of interest to the user. A similar process is required for the data points which trail a change. Based
on this analysis, the end points of the basic query are reconstructed. The data decompression process
must then fill in all redundant intervening values as it builds the output CDF packets.

Assuming that all points are to be returned, the Data server complexity would be high. If only changes
are to be returned to the user, the end-point algorithm would still be performed to find an initial value,
but intervening data points would not be filled in.

HST Vision 2000
Archive Format Study

P Ditson 8 9/26/96 3:46 PM

 Cost

 Performance

Preloader performance would be affected slightly. The nature of this processing is fairly simple, so
performance is expected to be only slightly poorer.

Data Warehouse ingest performance should improve moderately with a smaller input data stream.
Query performance should not be affected, with the exception of any impact due to additional tables and
filtering. Queries may become quicker since the warehouse is working with a smaller data set.

Data Server performance would be greatly reduced, due to the need to perform additional steps to
recover missing points. Futhermore,

Option B - Reduced changes
Reduced changes consists of processing a changes-only data set in such a way as to reduce the volume to
its absolute minimum. This approach requires a relatively high level of understanding of the data content.
The fundamental difference between this approach and the others, is that it stores data as a function of
frequency of change, rather than as a function of time.

This approach requires an alternative database structure; one which is indexed on data occurrence, as
opposed to time.However, the Red Brick indexing approach renders very large numbers of tables
impractical. For every data table row, each index maintains 6 bytes for a pointer, and 1 bit for every related
table. Therefore, 5000 data tables would require 631 bytes for each data point in a simple, single-index
schema. A more practical approach would be to group mnemonics by subsystem. Twenty-six tables would
require 10 bytes per entry per index.

The concept of organizing the database on mnemonic occurrence has been discussed with Red Brick, who
considers it possible, but no detailed database design has been developed.

This analysis uses as its source of information, existing work done by Roger Doxsey of the STScI.
Reference R. Doxsey memos for further detail.

This method is highly optimized for retrievals which request a small amount of data over a very large time
span (frequency domain). It optimizes seek performance by categorizing data by type (e.g. subsystem,
mnemonic, etc), and storing start and stop times of contiguous data for each parameter. This results in a
dramatic reduction of data for a large number of parameters which change infrequently.

This method does not offer any reduction for parameters with a high rate of change. High-rate parameters
(which number fewer, but comprise the bulk of the data in the telemetry stream) are stored seperately, with
some data processed according to various algorithms that take into account the nature of specific
subsystems or sensors. The algorithms basically involve averaging data and filtering noise.

 Volume

Volume estimates are based on a database field of 28 bytes, since two time fields must be stored for
each change. Each data point consists of a start time, stop time, a mnemonic id, raw and EU values,
and flags. The database design may be flexible enough to keep variable table structures, resulting in
more optimized storage by mnemonic field lengths, but the design has not been proposed. Therefore,
it is assumed that all tables, including averages, have the same format. This format is shown in Table
4.

Approximately 5600 parameters, which see little or no change over 3 hours, are processed as changes
only and stored in tables grouped by subsystem in the warehouse.

Approximately 450 parameters are selected for alternative processing in this scheme. This includes 150
parameters (selection scheme unknown) which are to be averaged over 10 seconds, and approximately
300 parameters which are to be averaged over 30 seconds. These averages are stored as data in the
warehouse, and the raw CDF packets are stored in flat files.

A few parameters which hold raw memory information are stored as bit mapped flat files. This
represents a negligable amount of raw data, however.

HST Vision 2000
Archive Format Study

P Ditson 9 9/26/96 3:46 PM

Table 4 - Changes Only, Reduced
Field Bytes
Start time 8
Stop time 8
Mnemonic ID (numeric) 2
Raw value 4
EU value 4
Flags 2

Total 28

Results c-o w/
hi

avgs

Hi rate
flat

Total*

kBytes per sec 5.8 29 34.8
GB per day .5 2.5 3.0

GB per month 15.3 76.4 91.7
TB for mission 3.7 14 17.7

Constants
60 avg changes per second warehoused
150 hi rate params averaged @ 10 sec + stored flat
298 E system params averaged @ 30 sec + stored
flat
36% DB expansion factor (estimate)**
2,629,800 seconds per month (1/12 year)
.33 binary compression on flat files not included

* in terms of pure volume only - this is not the volume managed by the DW
** this estimate is based on 26 dimension tables, single fact table index schema

This volume estimate does not account for statistical data such as mean, min, max, std dev, which
would be required in order to make meaningful use of the averaged data in analysis. This data would
be required in order to efficiently access the raw data held in flat files. The volume of this data remains
to be determined and must be added to this estimate.

This estimate is sensitive to the rate of change of parameters. The data samples that were analyzed are
assumed to be typical.

 Complexity

Preloader processing for this option is slightly more complex than for the All Changes option. Some
additional processing must be performed to generate statistics, unless the data warehouse can perform
this function on the fly.

Data warehouse design is moderately more complex. The higher number of tables envisioned using
this approach would make the database design, development, and maintenance more complex than the
other alternatives. It is not known at this time, in absolute terms, just how complex this concept is for
the data warehouse tool.

The Data Server design would be significantly more complex with this option. Time-based queries
may need to be transformed to allow effective retrieval of frequency-based data. Data mining would be
restricted to only parameters which show a low rate of change, or selected averages. The bulk of the
information of interest to the spacecraft engineer is relegated to flat files which prohibit efficient
extraction of data. It is not known how a query would need to be constructed, nor how the data
warehouse would return the results, for data which falls within the time span of a single changes-only
record.

An indexing scheme would need to be developed to make use of the data warehouse to obtain times for
events or conditions, then allow lookup in the flat file archive for the high resolution data. This is
similar, but somewhat more involved, than the indexing required for All Points - Option B.

This design is sensitive to changes in the nature of the telemetry or the format. Since the division
between low- and high-rate changes is arbitrary, it is subject to change. Those parameters which fall
near the threshold also have the potential to cross it. It is not likely that this represents a high level of
added complexity, however.

HST Vision 2000
Archive Format Study

P Ditson 10 9/26/96 3:46 PM

It should be noted, philosophically, that the advantages of generality or encapsulation are lost when
design is based on the content of the data, not on its general characteristics. Who decides which
parameters to reduce or which to vault? What happens if users realize later that some data should be
included in different category (e.g. higher frequency) or sampled/averaged differently? Is the algorithm
sensitive to changes in formats, spacecraft subsystems, spacecraft conditions (e.g. from low to high rate
of change), etc. Too many rules become difficult to manage, and this philosophy risks a loss of
generality. Loss of flexibility or generality in the design becomes the programmer's chore. These are
issues of complexity which would need to be addressed when developing this design.

 Cost

 Performance

Performance for long duration queries (e.g. start of mission) would be highly efficient, requiring the
scanning of a minimum number of tables containing a highly compressed form of the data. Given the
volume estimate, it is conceivable that most data within the warehouse could be maintained on line
(on the order of a Terabyte) and be immediately available.

As queries become more time-based, or more specific for high resolution data, efficiency rapidly
degrades to that of sequential file lookups. Effective indexing can improve performance, but at the cost
of additional processing at several stages in the Data Server - query construction and transformation,
results analysis, and data file indexing.

Analysis of all points in a five minute period for a 40 Hz parameter based on an event would require
more resources with this option than with other schemes. This is the type of query which would be
time critical in failure analyses.

Combined Changes with All Points

This concept attempts to combine the best of both varieties of options discussed previously. It is based on
the realization that there are two fundamentally opposing domains which describe the data - time and
frequency.

Users in the frequency domain place a high demand on resources in a time-ordered archive. Simple requests
spanning all time require scanning all datasets. On the other hand, users in the time domain can construct a
simple query which would be unresolvable in a changes-only schema, since the specific data requested does
not exist. Demand is placed on resources to interpret the query, establish the context, and evaluate the
consistency of the results.

This concept also takes into account the dynamic nature of the data storage industry, and attempts to best
utilize a realistic forecast for Space Telescope data storage needs. It is assumed that current rate of change in
storage densities will continue for some time (10 years), and that the focus should be on storage needs and
performance data retrieval based on existing data, and data to be archived over the next five years. This
places a requirement on the design of the system to be open and scalable.

User requirements are also accounted for in this concept. Spacecraft Engineers generally need immediate
access to all data within a short time frame, 6 months for example. These requests are very detailed in
nature, and span a relatively brief period, on the order of minutes to days. Trending of short term data is
done as a standard procedure and is relatively constant in its definition of datasets. Long term trending is
not performed as often. Requests on historical data are generally based on events, and are very specific, with
limited time windows. Averaged data may not provide the resolution necessary. This user is reasonably
willing to trade immediate response performance for access to all data.

Instrumentation Engineers, on the other hand, have a greater need for long term trending, and can make
good use of averaged data. Queries for this set of users can easily span several months or years. The nature
of request is based more often on frequency of occurrence. This user is willing to trade resolution of data for
realistic response performance.

Given these requirements, and ignoring the issue of volume for the moment, a system is required which
provides short-term high-resolution access to data for (arbitrarily) 6 months, and near real-time response for
simple queries involving all occurrences of a specific few parameters. This concept also combines a

HST Vision 2000
Archive Format Study

P Ditson 11 9/26/96 3:46 PM

common element of both design approaches discussed previously - the high frequency data, which
comprises the bulk of the data, is stored in some form as flat files.

The concept, then, consists of developing a database which is indexed on time for all points, and is
indexed by mnemonic for low resolution parameters and averages. All points of data would be maintained
on line for a short time to satisfy 90% of the short term detailed requests. This data would be also be
processed and categorized by mnemonic and kept online for the life of the mission as averages or changes.

This concept balances online volume and retrieval performance for all users. Data Server and Pre-loader
complexity are minimized by offloading some of the complexity into the database design.

Two options emerge under this approach. The first option maximizes performance at the expense of
volume; this is labeled the Turbo option. The second option reduces the volume of the archive at the
expense of performance; this is referred to as the Economy option.

Option A - Turbo model
The Turbo model attempts to provide the highest performance for all queries, regardless of time or nature of
query. Reduced changes are kept immediately accessible on RAID storage for the life of the mission (or
most of it, depending upon the amount of RAID available). This maximizes performance for all frequency-
domain queries.

A portion of RAID is reserved for all points, to provide high performance for a majority of immediate-term
requests in the time domain (e.g. 14 days). The remainder of the near-term all points data (e.g. 14 - 180
days) is copied to optical, and is maintained by the data warehouse. For long term (e.g. > 180 days),
optical data segments are taken offline and exported to the shelf. Retrieval of all points is possible by
loading offline segments into the warehouse on demand.

It is assumed that users requesting offline data will be very specific about time periods desired, and that
time spans will be short; i.e. no excessive loading of offline segments will be necessary. For queries which
cover long time spans, or are simply inquisitive in nature, it is assumed that all points data is not wanted,
and that these types of query will be made against averages or changes only.

In this model, near-term data is copied to optical. Once data is stored on optical, it is basically stored for
the life of the mission. Therefore, high rate data is captured in all-points format, and it is not necessary to
keep it in separate flat files for the changes only domain.

 Volume

Assuming all points online for six months, with raw analogs stored in flat files, and changes with
averages online for the life of the mission. This estimate is based on a 16-byte all-points record, a 24-
byte changes-only record, 16 bytes data plus 2 bytes frequency field (to be resolved) for averaged
records, and raw analogs to be stored in flat files.

HST Vision 2000
Archive Format Study

P Ditson 12 9/26/96 3:46 PM

Field all points changes averages raw analogs
Start time 8 8 8 8
Stop time 0 8 0 0
Mnemonic ID (numeric) 2 2 2 2
Raw value 4 4 0 4
EU value 0 4 4 0
Flags 2 2 2 0
Sample period 0 0 2 0

Totals 16 28 18 14

Results
kBytes per sec 67 5.8 TBS 6.1

GB per day 5.8 .5 TBS 0.5
GB per month 176 15.3 TBS 16
TB for mission 36 3.7+ TBS 3.3

Projections1

days online 180 3 mission mission --
online storage thru 20012 1 TB -- TBS --
offline storage thru 20012 15 TB -- -- 1.3TB

addl. storage post 2001 2 15+ TB 2.7 TBS 2TB

1does not account for binary compression techniques
2 focus is on current and near term storage - long term storage will likely be influenced by improvements in storage
technology
3 assumed

 Complexity

Preloader complexity is the sum of all-points and changes only options. Both data streams are
constructed by the preloader and fed to the warehouse.

Data warehouse complexity is moderate since the database design must accomodate both time and
frequency (occurrence) structures. This complexity is mitigated, however, by the development and
maintenance support provided by the vendor.

Data Server complexity is moderate since a mechanism must be employed to determine which database
schema (all-points or changes-only) the query should reference. For some queries, the choice is simple,
based on the expected result (e.g. all points). Others may require more intelligence. This applies only
to ad hoc queries; pre-scripted queries would be optimized by definition.

 Cost

 Performance

Queries are optimized for all cases, due to the combined design. The data server (most likely) will
determine to which data set a specific query will be applied in order to maximize its performance.

Option B - Economy model
The Economy model trades in performance for a reduction in volume. A smaller proportion of reduced
changes are kept immediately accessible on RAID (e.g. 2 or 3 years) with the remainder on optical or
alternative storage for the life of the mission. This provides reasonable performance for frequency-domain
queries. Note that scanning the entire frequency database would likely involve only a handful of physical
storage units.

A much larger proportion of RAID is reserved for all points, to support a majority of near-term requests in
the time domain (e.g. 180 days). Long term, all-points data (e.g. > 180 days), is discarded as the all-
points cache fills. Long-term retrievals are possible only by reconstructing all points from changes only.

This model does not require that all points data be maintained for the life of the mission. Therefore, to
provide faithful reconstruction of high resolution data, high rate flat files are required.

HST Vision 2000
Archive Format Study

P Ditson 13 9/26/96 3:46 PM

 Volume

Assuming all points on RAID for six months, with high rate data stored in flat files, and changes with
averages split between RAID and optical for the life of the mission. This estimate is based on a 16-
byte all-points record, a 24-byte changes-only record, 16 bytes data plus 2 bytes frequency field (to be
resolved) for averaged records, and high rate data to be stored in flat files.

Field all points changes averages hi rate data
Start time 8 8 8 8
Stop time 0 8 0 0
Mnemonic ID (numeric) 2 2 2 2
Raw value 4 4 0 4
EU value 0 4 4 4
Flags 2 2 2 2
Sample period 0 0 2 0

Totals 16 28 18 14

Results
kBytes per sec 67 5.8 TBS TBS

GB per day 5.8 .5 TBS TBS
GB per month 176 15.3 TBS TBS
TB for mission 13 3.7+ TBS TBS

Projections1

days online 180 3 mission mission --
RAID storage thru 20012 1 TB TBS TBS --

optical/alt storage thru 20012 -- TBS -- TBS
addl. storage post 2001 2 -- 2.7 TB TBS TBS

1does not account for binary compression techniques
2 focus is on current and near term storage - long term storage will likely be influenced by improvements in storage
technology
3 assumed 180 day cache

 Complexity

Preloader complexity is the sum of all-points and changes only options. Both data streams are
constructed by the preloader and fed to the warehouse.

Data warehouse complexity is moderate since the database design must accomodate both time and
frequency (occurrence) structures. This complexity is mitigated, however, by the development and
maintenance support provided by the vendor.

Data Server complexity is moderate-high since a) a mechanism must be employed to determine which
database schema (all-points or changes-only) the query should reference, and b) all points queries which
are outside the cache must be reconstructed from changes only and flat files.

 Cost

 Performance

Performance high for most queries, due to the combined design. The data server (most likely) will
determine to which data set a specific query will be applied in order to maximize its performance.
Time domain, all-points queries will suffer performance if applied beyond the cache time frame.

Summary
All Points - CDF format

• most direct approach to storing and accessing the telemetry for all users
• provides immediate access to all data, with a minimal amount of pre- and post-processing overhead.

HST Vision 2000
Archive Format Study

P Ditson 14 9/26/96 3:46 PM

• high consumption of the storage resource.
• poor performance for retrievals covering all time
• Data is directly ingested by breaking the input data packet into fields, and duplicating the spacecraft for

each mnemonic in the CDF packet.
• Extraction of data is performed directly on the stored data according to the input query; no construction

of complex queries is required.
• All features of the data warehouse may be utilized for data mining and ad hoc querying.
• Basic reconstruction of data points is required prior to presentation to the user; the data server formats

the output into CDF packets, and builds headers and time stamps.

All Points - modified CDF format

• same features as straight CDF format
• reduces online warehouse volume slightly
• improves retrieval performance slightly on all but raw data extraction
• extraction of raw data requires query on EU and event information, then indexing flat files

Changes Only - time indexed

• involves compressing the data by extracting all data which is repeated in consecutive packets.
• Data is pre-loaded by first breaking the input data packet into fields, and duplicating the spacecraft time

for each mnemonic in the CDF packet, similar to all points, above.
• The pre-loader maintains a changes table to filter out repetitive values.
• Filtered data is then used to update the change table, and is ingested into the data warehouse.
• This process is performed currently on data prepared for LOTTS.
• This step requires the implementation of additional code of low complexity, and it may be possible to

port the current software.
• Volume of storage is greatly reduced for this option.
• accounted for in volume estimate is: a) data which changes from the previous sample for each

mnemonic; b) initial and final points in a contiguous data stream; and c) periodic snapshot of all data
(presumably every hour).

Changes Only - mnemonic indexed
• represents greatest reduction in volume
• accounted for in volume estimate is: a) data which changes from the previous sample for each

mnemonic; b) initial and final points in a contiguous data stream; and c) periodic snapshot of all data
(presumably every hour).

• Prediction uses Institute data, but adds extra time value for each change, and volume of statistical data
• increases complexity of data server in order to perform faithful reconstruction from frequency based data
• performance is greatest for all-time queries
• performance is weakest for all data points, limited time queries, which would require flat file lookups
• uncertainty regarding "lossless" compression
• involves compressing the data by extracting only low-resolution data which is repeated in consecutive

packets.
• high resolution data is stored in flat files at full time resolution
• simple averages for select high-resolution mnemonics are kept in warehouse
• requires statistical data, including min, max, mean and standard deviation be kept in warehouse
• Data is pre-loaded by first breaking the input data packet into fields, and duplicating the spacecraft time

for each mnemonic in the CDF packet, similar to all points, above.
• The pre-loader maintains a changes table to filter out repetitive values.
• Filtered data is then used to update the change table, and is ingested into the data warehouse.

Combined

• offers direct approach to storing and accessing the telemetry for all users
• provides immediate access to all short term data, with a minimal amount of pre- and post-processing

overhead.

HST Vision 2000
Archive Format Study

P Ditson 15 9/26/96 3:46 PM

• provides immediate access to all long term data, at a reduced resolution
• high consumption of the storage resource.
• data is directly ingested by breaking the input data packet into fields, and duplicating the spacecraft for

each mnemonic in the CDF packet.
• also involves compressing the data by extracting all data which is repeated in consecutive packets.
• pre-loader maintains a changes table to filter out repetitive values
• filtered data is used to update the change table, and is ingested into the data warehouse.
• Extraction of data is performed directly on the stored data according to the input query; no construction

of complex queries is required.
• All features of the data warehouse may be utilized for data mining and ad hoc querying.
• Basic reconstruction of data points is required prior to presentation to the user; the data server formats

the output into CDF packets, and builds headers and time stamps.
• does not require data server to perform reconstruction from frequency based data
• performance is best for all-time queries
• performance is best for all data points
• minimizes flat file lookups
• no uncertainty regarding "lossless" compression
• simple averages for select high-resolution mnemonics are kept in warehouse
• statistical data, including min, max, mean and standard deviation kept in warehouse
• complexity is shifted from custom-designed code to database design

HST Vision 2000
Archive Format Study

P Ditson 16 9/26/96 3:46 PM

The Rejects

The following approaches were excluded from detailed evaluation for the reasons specified.

 Binary compression

Won’t work since RB does not work on compressed data and is not designed to make OS calls to
compress and decompress. The only way compression would be possible is if: a) it is done at the file
level by the operating system (or HSM), and decompressed when copied to online medium; or b) it is
done by the storage hardware on the fly. Any compression performed will affect the retrieval
performance. Benchmarks must be run to determine whether the I/O performance will meet the RB
response time requirements.

 Red Brick compression

A misnomer, really. RB converts from ASCII to binary, providing a 10% reduction. The 30% DW
expansion factor includes this reduction.

 Packed bilevels

This option is based on the observation that for each bit in a bilevel, the data warehouse must store 20
bytes. A method which packs 8 bilevels per byte in the DW would reduce the all points estimate by
roughly 1500 mnemonics, ideally. However, this assumes an even distribution of bilevels across all
minor frames (it is necessary that all bilevels packed under one entry be associated in the same half-
minor-frame). It is not known what the bilevel distribution truly is, nor is it known yet how many
points per second this reduces the storage volume. Format changes also result in a different
distribution, which must be accounted for. This option introduces low to moderate complexity in the
preloader phase in order to pack the bilevels. The data server design would see moderate to high
complexity since queries would be more complex, and expansion and reconstruction would be
required.

This option is considered less practical than other approaches, and will not be evaluated fully.

HST Vision 2000
Archive Format Study

P Ditson 17 9/26/96 3:46 PM

User group Query Description
STScI Ability to access and plot long term telemetry

Filetering using other engineering telem params as criteria, or user definable limits
Limit checking based on mode definition
Telem validation based on modes
Access of all monitor points across subsystems including HST attitude info, sun-, roll-, beta-
angle, day-night, etc

Plot SDF-A temp when > 60 deg C .AND. sun angle
> 90 deg .AND. GHRS in Operate Mode

Search capability to plot data on user defined criteria in a variety of ligical combinations

All FGS telem, such as flags, star-selector angles, PMT counts must be saved at the highest
data rate
Ability to reprocess old data by running OMS and AEDP data (changes, astrometry,
engineering) or equivilent.

When telem fmt is F .OR. P .AND. during vehicle
offset mnvr, IF avg of Comp Error over mnvr is
positive, report max Comp Error over period., else if
avg of Comp Error over mnvr is negative, report
min Comp Error over period.

Course track bump example

When tlm fmt is F or P bearing angle range during
offset mnvr, find bearing angle range in succeeding
fine lock period, report times of cases when two
bearing ranges overlap

Reversal bump example

Find number of scan step exceeded cases between
t1 and t2.
Find all time periods > 12 hrs during which both FOS
and GHRS are in operate mode.

FOS operate mode is defined by 3 flags, each in specific state. GHRS has 4 discrete states
described by one multistate flag.

Find all time periods when SDF-A temp is > 65 deg
for duration > 6 hrs .AND. sun angle < 90 deg for
any portion of warm time
Find all cases where earth limb angle > 15 deg for
duration > 20 hrs and FGS1 and FGS2 are in use at
end of [?]
Find all cases when HGA xgimbal > 90 deg or < -85
deg .AND. HGA ygimbal > 75 deg .AND. xgimbal
.OR. ygimbal torque > 3.5
Find angle of +v2 SA immediately after all SA
profile checks fail
Find times for duration > 1 hr while any of (T1-T2,
T2-T3, T4-T5,T6-T1) have abs val > 3 deg C
Find times when avg fwd shield temp > x deg C and
FOC has been used to take images

Ops All points from t1 to t2
Selected points (1-50) from t1 to t2
Selected points (51-all points) from t1 to t2
All points when (x .AND. y .OR. z) satisfy
(condition) for mission, or for t1 to t2
Selected points (1 to all) when (x .AND. y .OR. z)
satisfy (condition) for mission, or for t1 to t2
Selected points when (criteria) satisfy (condition1 >
condition2) for mission, or for t1 to t2
Return stats (min, mean, max, std dev) for any of the
specified query types

Option for all queries

Monitor (T&A) all tlm data for one or more mnemonics within a specified start and stop time
retrieve list of mnemonics associated with a specific PDB

I.

